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Localized excitations and their thresholds
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~Received 4 August 1999!

We propose a numerical method for identifying localized excitations in discrete nonlinear Schro¨dinger type
models. This methodology, based on the application of a nonlinear iterative version of the Rayleigh-Ritz
variational principle yields breather excitations in a very fast and efficient way in one or higher spatial
dimensions. The typical convergence properties of the method are found to be super-linear. The usefulness of
this technique is illustrated by studying the properties of the recently developed theoretical criteria for the
excitation power thresholds for nonlinear modes.

PACS number~s!: 45.10.2b, 63.20.Pw
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In recent years, an increasing number of studies have b
devoted to the study of localized excitations in nonline
lattices@1#. This growing interest is based on the fact that t
proven existence@2# of such modes suggests a tempting e
planation of energy focusing, important to many branches
physics. Also, more recently there has been some theore
speculation on the compatibility of such modes with t
breathing oscillations of the DNA double strand@3# and the
behavior of the amorphous materials@4#. Even more impor-
tantly, in the past year, there has been strong experime
evidence for the existence of such modes in certain e
tronic materials, as revealed through Raman spectrosc
@5#.

In this light, we will, in this paper, propose a techniqu
for numerically constructing breathers, and utilize it
clarify a number of theoretical aspects. The main thrust
this study will be the construction of breathers in the cont
of the discrete nonlinear Schro¨dinger~DNLS! equation. This
model has wide applicability, ranging from biology and co
densed matter physics to nonlinear optics@6#. Furthermore, it
is of importance in, practically, every application that can
modeled by a Klein-Gordon~KG! type of nonlinear lattice
equation, since the envelope of nonlinear KG waves is g
erned to leading order by the DNLS equation.

The methodology we propose is based on the gauge s
metry of the DNLS equation and hence the essential ing
dient is its monochromatic nature. More explicitly, seeki
solutions of the form exp(2ivt)ui to the equation

i ċ i52k~c i 1122c i1c i 21!2uc i u2sc i , ~1!

one arrives at a nonlinear eigenvalue problem determin
the the spatial envelope profile$ui%,

vui52k~ui 1122ui1ui 21!2uui u2sui . ~2!

Inspired by Ref.@7#, we can view the equation forui as a
bound state quantum-mechanical problem,ĤuW 5vuW . How-
ever, instead of a linear Schro¨dinger operator, we have
nonlinear discrete operatorĤ whose bound states~lowest
energies! will be the localized excitations whose properti
we are studying. Due to its nonlinear nature~the diagonal
entries of the matrix@H# i i 52k2uui u2s depend on the eigen
PRE 611063-651X/2000/61~4!/4652~4!/$15.00
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vector!, a direct solution of the eigenvalue problem is n
available. It is possible however to searchiteratively for a
solution of the eigenvalue equation. This is reminiscent
the Rayleigh-Ritz principle in linear quantum mechanic
where the expectation value^uuHuu& of any normalized state
gives an upper bound for the energy of the ground state
one is looking for. Explicitly the idea is that, based on

initial guess used in the operatorĤ, one solves the resulting
linear eigenvalue problem and uses the result in recalcula

Ĥ and so on, until desired precision is reached. Methods
similar nature have previously been used in the study of
Holstein polaron model, and similar problems@8#.

Some previously applied construction techniques d
with the full time-dependent problem and are based eithe
continuation techniques@9,10# or on limit-cycle techniques
with good initial guesses@11#. These methods require fu
scale time integration until the trajectory returns to the Po
carésection~essentially in one time period of the breath
oscillation! and subsequent refinement of the spatial struct
through a Newton iteration. Such methods are evidently v
time consuming. The advantage of such methods is that
can solve, coupled to the direct full-scale time integratio
the variational equations for the dependence of the final s
on the initial state~see, i.e., Refs.@9# and @11#! and thereby
determine the stability in terms of Floquet multipliers. How
ever, for the DNLS equation construction and stability info
mation can be achieved in several alternative ways@12#. For
purely construction purposes, however, our technique
much less time intensive, and much more robust in ca
where the Newton iteration may encounter problems~i.e.,
when an extra Floquet multiplier approaches unity!. In most
of the cases we have studied the convergence of the me
is superlinear.

One of the important assets of our method is that it hin
on the solution of eigenvalue problems forsparsematrices.
Basically only the diagonal and principle off diagonals a
populated. Hence, it is easy to implement special algorith
developed for matrices with this sort of symmetric spa
structure to significantly reduce the amount of required co
putations, which is important in higher dimensions.

As an illustration of our method’s value, we will in th
following present one-dimensional calculations where
4652 © 2000 The American Physical Society
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strength of the nonlinearity parameters is varied while the
coupling is fixed. The way to construct breathers of any p
scribed power,P5( i uc i u2, for a definite value ofs, is, at
every step of the iteration, to scale the computed normali
eigenvector asui→P1/2ui .

Depending on the initial condition and the center positio
we can normally trace breathers centered on a site~odd
modes! or centered between sites~even modes!. An example
of two modes with the same power (P51.3) for the two
cases is given in the top two panels of Fig. 1.

From previous studies it is well known that the even a
odd modes do not possess the same energy, resulting
‘‘effective’’ Peierls-Nabarro ~PN! barrier @14,15#. As is
known by analytical methods@15#, for the unstaggered cas
the odd mode is the real ground state and the unstable
mode will eventually collapse to it. Hence, we anticipate t
as we increase the value of the nonlinearity parameter,
odd modes will always correspond to a more negative eig
value ~for the same power! confirming the above stability
features. This is what we observe in the bottom panel of F
1, showing the even and odd mode eigenvalues. The ei
values merge in the linear case~since the absence of nonlin
earity degenerates the states, making them extended! but as
s is progressively increased, the height of the ‘‘effective
PN barrier becomes larger and the excitations concentrat
a single site~as predicted in Ref.@7#!.

Another important trait of this technique is that it ca
always probe how many localized modes exist on the latt
For large values of the nonlinearity parameters ~when look-
ing for a specific kind of mode, say, even! there will appear
one bound state or none~beyond the thresholds for the
predefined power!, while for small values ofs emerging
from the linear limit of extended excitations, there will a
pear many localized modes that can be probed through
eigenvalues of the matrix. In this way, one can probe
only the ground state of the problem, but also the exci
states that correspond to the rest of negative~bound state!
eigenvalues of the problem. Our linear stability results
such modes within the framework of the rotating wave a

FIG. 1. Envelope profileui of an odd and an even mode co
structed by our method forP51.3 ~top two panels!. Bottom panel
shows bound state eigenvalues for the even~solid line! and the odd
~dashed line! modes~see text!.
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proximation indicate that in the case of even parity, th
typically correspond to local minima of the energy where
for odd parity solutions, they typically correspond to sadd
points. Our stability calculations will be analyzed in mo
detail elsewhere@13#. A typical search of such excited state
in the case of staggered odd modes fors50.15, k50.1,
P51.0 appears in Fig. 2. The eigenfunction corresponding
the five most negative eigenvalues are shown in the fig
This picture is reminiscent of multiple localized modes o
served in Ref.@14#. Our results indicate that such states ex
only for s,0.5 and they can be continued to the uncoup
limit where a relation to multibreather configurations can
established@13#.

Generalization tod dimensions is very straightforwar
@16#. Then, one deals with anNd3Nd sparse matrix, which
has the same structure as before in the diagonal and prin
off diagonal bands but has also been filled in the band
elements@H#m,m1nN , n51, . . . ,d21. This is, of course,
true for fixed boundary conditions~BC!. The implementation
of periodic BC follows directly by adding @H#1,nN
52ki ,@H#nN,152kj , with n51, . . . ,d (ki andkj are de-
fined in Ref.@16#!. In this way, we can easily construct un
staggered breathers, such as those shown in Ref.@18#, but
also staggered in any direction~i.e., as shown in Fig. 3 for
two dimensions! localized excitations in two or higher di
mensions.

In order to demonstrate the accuracy of our method
have extended it to nonlinear KG chains. Taking a typi
such example@7,17#

üi5D~ui 111ui 2122ui !2V2ui1ui
3 ~3!

and looking for a perturbative solution to leading orderui

5eC i , with C i5exp(2iVt)ci1exp(iVt)ci* , rescaling D
→e2k, we get an equation~in rescaled timet85e2t) which
reads iVċ i52k(c i 1122c i1c i 21)23uc i u2c i . Through
this derivation, solutions valid to timesO(e22) are obtained.
Checking this~as well as the accuracy of our constructio
technique!, we have used the DNLS approximation to co

FIG. 2. The ground and first four excited odd localized sta
gered states existing for very small values of the nonlinearity
rameters. Here,s50.15.
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4654 PRE 61BRIEF REPORTS
struct breathers, subsequently input to integrators of
above KG equation. The result is plotted in Fig. 4 for
even mode.

We can see that the mode is propagating essentially u
tered throughout our simulation. At large time scales, t
solution, as expected, will eventually get reshaped int
stable localized odd mode.

One of the powerful indications of the usefulness of o
technique is its ability to calculate the excitation thresho
of breathers. The discussion of these power~or energy!
thresholds was initiated for the DNLS in Ref.@18# ~although
already known for polarons@19#!, where a scaling argumen
was used to show that the power~energy in the terminology
of Ref. @18#! of a localized breather excitation will beP
;A22ds with A the amplitude of the excitation andd the
dimension of the lattice. Hence, fors,2/d there exist
breathers of arbitrarily small power. On the other hand
s>2/d, then for the equality the energy approaches a c
stant and for the inequality, it diverges asA tends to zero.
Hence, there cannot exist breathers of arbitrarily small
ergy, indicating the existence of a threshold.

FIG. 3. Profile of a two-dimensional breather staggered al
one ~left panel, ki52kj50.1) or both ~right panel, ki5kj

520.1) directions;s51.

FIG. 4. Propagation of unstable KG breather~constructed
through our technique!.
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Very recently, Weinstein@7# was able to prove this con
jecture rigorously using essentially a Rayleigh-Ritz formu
tion of the nonlinear eigenvalue problem that is used here
conjunction with the Nirenberg inequality@20#. Weinstein
was able to prove that the excitation power threshold has
functional form

Pthresh5@~s11!kI#1/s, ~4!

where

I 5 inf
S (

i
uui u2D s

(
i

@2ui~ui 111ui 2122ui !#

(
i

uui u2s12

. ~5!

Our contribution~and at the same time an excellent cro
check of both our technique as well as of the validity of t
theoretical results developed in Ref.@7#!, is to perform nu-
merical studies to explicitly calculate the power threshold
a function of the coupling parameterk as well as the nonlin-
earity parameters.

Finding the power thresholds using our numerical sche
can be approached in two ways. We can find the minim
power for which an excitation can survive in a lattice with
particular strength of coupling or nonlinearity. Alternativel
we can search for the maximums or k that can sustain
breathers of a certain power.

Our results are summarized in Fig. 5. The inset show
log-log plot of the powerP versus the couplingk for a fixed
value of the nonlinearity parameters52.5. In extremely
good agreement with the theoretical prediction of Ref.@7# of
a linear correspondence with a slope of 1/s50.4, we find a
slopeS50.403. The same kind of agreement was obser
in all the cases tested for the dependence ofP on k. The
figure also shows for a fixed value of the couplingk
50.1) the dependence of a theoretically motivated funct
f 5P@2k(s11)#21/s on s. Our motivation in selecting this
combination of axes is in order to verify the validity of ou

g
FIG. 5. Plot of the excitation threshold forf 5P@2k(s

11)#21/s, as a function of the nonlinearity parameters. Inset
shows log-log plot of the threshold power for breather excitations
a function of coupling strength, for fixeds52.5.
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results in the larges limit. In that limit using the argumen
of the localization of the excitation on a single site it can
readily seen that lims→`I 52. Hence, lims→` f 51, again in
very good agreement with our results. An important prod
of this calculation, is the behavior off at small values of the
nonlinearity parameter, where the limit calculations do n
apply. We can see that the dependence ofI on s departs
from the predicted threshold of 2@the simulations are in one
dimension~1D!# and is replaced by a sharp increase, bef
single site localization takes over, leading towards the li
dependence illustrated above.

In summary, we have presented a numerical method
the construction of discrete, localized, time periodic mod
supported by nonlinear lattices subject to Hamiltonian
namics. A clear asset of the method is its very straightf
ward numerical implementation and the ability to use spa
matrix eigenvalue solvers, significantly reducing the num
of computations, and facilitating the generalization of t
approach to higher dimensions for large lattices. In the se
of the nonlinear matrix eigenvalue problem, the theoreti
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background of such a generalization is quite simple, as
have indicated. Importantly, we have used this method
quantitatively predict the behavior of the threshold of the
breather excitations, conjectured in Ref.@18# and predicted
in Ref. @7#. Not only has excellent agreement been est
lished with the theoretical predictions of Ref.@7#, but in fact
the method has rendered possible the numerical explora
of regimes of parameter space that were not amenabl
analytical treatment.

We believe that our findings will permit the theorist
construct, probe and understand better the nature of s
modes and their properties. The experimentalist will hav
quantitative and straightforward tool for predicting th
thresholds of excitations of these modes, in realistic, exp
mental situations.

P.G.K. gratefully acknowledges support from the ‘‘Alex
ander S. Onasis’’ Public Benefit Foundation. Research at
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of the U.S. DOE.
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