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Localized excitations and their thresholds
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We propose a numerical method for identifying localized excitations in discrete nonlineadBgjaotype
models. This methodology, based on the application of a nonlinear iterative version of the Rayleigh-Ritz
variational principle yields breather excitations in a very fast and efficient way in one or higher spatial
dimensions. The typical convergence properties of the method are found to be super-linear. The usefulness of
this technique is illustrated by studying the properties of the recently developed theoretical criteria for the
excitation power thresholds for nonlinear modes.

PACS numbd(s): 45.10—b, 63.20.Pw

In recent years, an increasing number of studies have beesectoy, a direct solution of the eigenvalue problem is not
devoted to the study of localized excitations in nonlinearavailable. It is possible however to seartératively for a
lattices[1]. This growing interest is based on the fact that thesolution of the eigenvalue equation. This is reminiscent of
proven existencg?] of such modes suggests a tempting ex-the Rayleigh-Ritz principle in linear quantum mechanics,
planation of energy focusing, important to many branches ofyhere the expectation valye|H|u) of any normalized state
physics. Also, more recently there has been some theoretic§|ves an upper bound for the energy of the ground state that
speculation on the compatibility of such modes with thegne s 100king for. Explicitly the idea is that, based on an
breathing oscillations of the DNA double straf#] and the . .. . A .

initial guess used in the operatHr, one solves the resulting

behavior of the amorphous materif4§. Even more impor- . X | bl d h It lculat
tantly, in the past year, there has been strong experiment};“1ear eigenvalue problem and uses the resuftin recaiculating

evidence for the existence of such modes in certain eledd and so on, until desired precision is reached. Methods of
tronic materials, as revealed through Raman spectroscofimilar nature have previously been used in the study of the
[5]. Holstein polaron model, and similar problefr&.

In this light, we will, in this paper, propose a technigue Some previously applied construction techniques deal
for numerically constructing breathers, and utilize it to with the full time-dependent problem and are based either on
clarify a number of theoretical aspects. The main thrust otontinuation techniquegd,10] or on limit-cycle techniques
this study will be the construction of breathers in the contexiwith good initial guesse§l1]. These methods require full
of the discrete nonlinear Schdimger(DNLS) equation. This  scale time integration until the trajectory returns to the Poin-
model has wide applicability, ranging from biology and con-care section(essentially in one time period of the breather
densed matter physics to nonlinear opfif Furthermore, it oscillation) and subsequent refinement of the spatial structure
is of importance in, practically, every application that can bethrough a Newton iteration. Such methods are evidently very
modeled by a Klein-GordoKG) type of nonlinear lattice  time consuming. The advantage of such methods is that one
equation, since the envelope of nonlinear KG waves is govcan solve, coupled to the direct full-scale time integration,
erned to leading order by the DNLS equation. the variational equations for the dependence of the final state

The methodology we propose is based on the gauge syngn the initial statesee, i.e., Refd9] and[11]) and thereby
metry of the DNLS equation and hence the essential ingredetermine the stability in terms of Floquet multipliers. How-
dient is its monochromatic nature. More explicitly, seekingever, for the DNLS equation construction and stability infor-

solutions of the form expfiwt)u; to the equation mation can be achieved in several alternative way. For
. X purely construction purposes, however, our technique is
L= =K 1= 28+ i) — || >, (1) much less time intensive, and much more robust in cases

_ ) _ __ where the Newton iteration may encounter proble(ins.,

one arrives .at a nonlinear e_|genvalue problem determining,hen an extra Floquet multiplier approaches unity most
the the spatial envelope profie}, of the cases we have studied the convergence of the method
is superlinear.

One of the important assets of our method is that it hinges
. . . on the solution of eigenvalue problems f&parsematrices.
Inspired by Ref[7], we can V'?W the eqLiaflon ff"i as a Basically only the diagonal and principle off diagonals are
bound state quantum-mechanical probléfy=wu. How-  populated. Hence, it is easy to implement special algorithms
ever, instead of a linear Sclifinger operator, we have a developed for matrices with this sort of symmetric sparse
nonlinear discrete operatdi whose bound statedowest  structure to significantly reduce the amount of required com-
energie$ will be the localized excitations whose properties putations, which is important in higher dimensions.
we are studying. Due to its nonlinear natutke diagonal As an illustration of our method’s value, we will in the
entries of the matrifH];; = 2k—|u;|2* depend on the eigen- following present one-dimensional calculations where the

wU; = —K(Uj 41— 20;+ U 1) — | u[27u; . (2
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FIG. 1. Envelope profila); of an odd and an even mode con-
structed by our method fdP = 1.3 (top two panels Bottom panel
shows bound state eigenvalues for the efsmiid line) and the odd
(dashed ling modes(see text

FIG. 2. The ground and first four excited odd localized stag-
gered states existing for very small values of the nonlinearity pa-
rametero. Here,oc=0.15.

. . ) . ) proximation indicate that in the case of even parity, they
strength pf t.he nonlinearity parameteris varied while the typically correspond to local minima of the energy whereas
coupling is fixed. The way to construct breathers of any préfor odd parity solutions, they typically correspond to saddle
scribed powerP=X;|y;|*, for a definite value ofr, is, at  points. Our stability calculations will be analyzed in more
every step of the iteration, to scale the computed normalizegletail elsewherl3]. A typical search of such excited states
eigenvector asij— P . - . in the case of staggered odd modes éor0.15, k=0.1,

Depending on the initial condition and the center position,p — 1 0 appears in Fig. 2. The eigenfunction corresponding to
we can normally trace breathers centered on a @t  {he fiye most negative eigenvalues are shown in the figure.
modes or centered between sitesven modes An example  Thjs picture is reminiscent of multiple localized modes ob-
of two modes with the same poweP £ 1.3) for the tWo  served in Ref[14]. Our results indicate that such states exist
cases is given in the top two panels of Fig. 1. only for ¢<<0.5 and they can be continued to the uncoupled

From previous studies it is well known that the even andmit where a relation to multibreather configurations can be
odd modes do not possess the same energy, resulting in @Btablished13].

“effective” Peierls-Nabarro (PN) barrier [14,15. As is Generalization tod dimensions is very straightforward
known by analytical methodsl5], for the unstaggered case [16]. Then, one deals with aNx N¥ sparse matrix, which

the odd mode is the real ground state and the unstable eveps the same structure as before in the diagonal and principal
mode will eventually collapse to it. Hence, we anticipate thaty¢ diagonal bands but has also been filled in the band of
as we increase the value of the nonlinearity parameter, th@lements[H]mmMN, n=1,...d—1. This is, of course,

odd modes will always correspond to a more negative eigenye for fixed boundary condition®C). The implementation

value (for the same powegrconfirming the above stability ¢ periodic BC follows directly by adding[H]yny

features. This is what we observe in the bottom panel of Fig_ _ [H]ona=—k;, with n=1 d (k, andk; are de-
] nN, ] [N i |

1, showing the even and odd mode eigenvalues. The eigeRqqd in Ref.[16]). In this way
values merge in the linear cag@nce the absence of nonlin- i
earity degenerates the states, making them exteriliéas 54 staggered in any directigie., as shown in Fig. 3 for

o Is progressively increased, the height of the “effective” 5 gimensions localized excitations in two or higher di-
PN barrier becomes larger and the excitations concentrate Qfjensions.

a single site(as predicted in Ref.7]). In order to demonstrate the accuracy of our method we

Another important trait of this technique is that it can e extended it to nonlinear KG chains. Taking a typical
always probe how many localized modes exist on the latticeg -, examplé7,17]

For large values of the nonlinearity paramatetwhen look-
ing for a specific kind of mode, say, evethere will appear
one bound state or nondeyond the threshold for the
predefined powey while for small values ofc emerging . . ) .
from the linear limit of extended excitations, there will ap- @nd looking for a perturbative solution to leading ordgr
pear many localized modes that can be probed through thg €'Vi, with W;=exp(-iQt)¢;+exp(Qt)yf , rescalingD
eigenvalues of the matrix. In this way, one can probe not~ €k, We get an equatiofin rescaled time’ = €’t) which
only the ground state of the problem, but also the excitedeads iQ ;= —K(i,1— 2+ ¥i_1)—3|i|?¥;. Through
states that correspond to the rest of negathveund state  this derivation, solutions valid to time3(e~2) are obtained.
eigenvalues of the problem. Our linear stability results forChecking this(as well as the accuracy of our construction
such modes within the framework of the rotating wave ap-technique, we have used the DNLS approximation to con-

we can easily construct un-
staggered breathers, such as those shown in [R8f, but

U;=D(Ujs 1+ Ui —2u;) — Q%u;+ u? 3)
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FIG. 3. Profile of a two-dimensional breather staggered along

one (left panel, ki=—k;=0.1) or both (right panel, kj=k;
=—0.1) directions,oc=1.

struct breathers, subsequently input to integrators of th
above KG equation. The result is plotted in Fig. 4 for an
even mode.
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FIG. 5. Plot of the excitation threshold fof=P[2k(o
+1)]"%¥ as a function of the nonlinearity parameter Inset
shows log-log plot of the threshold power for breather excitations as
a function of coupling strength, for fixed=2.5.
e

Very recently, Weinsteili7] was able to prove this con-
jecture rigorously using essentially a Rayleigh-Ritz formula-

We can see that the mode is propagating essentially Unafo of the nonlinear eigenvalue problem that is used here, in
solution, as expected, will eventually get reshaped into &yas able to prove that the excitation power threshold has the

stable localized odd mode.
One of the powerful indications of the usefulness of our

technique is its ability to calculate the excitation thresholds

of breathers. The discussion of these power energy
thresholds was initiated for the DNLS in R¢1.8] (although
already known for polarongl9]), where a scaling argument
was used to show that the pow@nergy in the terminology
of Ref. [18]) of a localized breather excitation will bE
~A2797 with A the amplitude of the excitation ardl the
dimension of the lattice. Hence, for<<2/d there exist
breathers of arbitrarily small power. On the other hand, if
o=2/d, then for the equality the energy approaches a con
stant and for the inequality, it diverges Astends to zero.
Hence, there cannot exist breathers of arbitrarily small en
ergy, indicating the existence of a threshold.

FIG. 4. Propagation of unstable KG breath@onstructed
through our techniqye

functional form

Pthresh:[(0'+1)k|]llgr (4)

where

>

| |Ui|2) > [—ui(Uis g+ U1 —2u))]

( i
20+2
> |u;
. | ||

Our contribution(and at the same time an excellent cross
check of both our technique as well as of the validity of the
theoretical results developed in RET)), is to perform nu-
merical studies to explicitly calculate the power threshold as
a function of the coupling parametkias well as the nonlin-
earity parametev.

Finding the power thresholds using our numerical scheme
can be approached in two ways. We can find the minimum
power for which an excitation can survive in a lattice with a
particular strength of coupling or nonlinearity. Alternatively,
we can search for the maximum or k that can sustain
breathers of a certain power.

Our results are summarized in Fig. 5. The inset shows a
log-log plot of the powelP versus the coupling for a fixed
value of the nonlinearity parameter=2.5. In extremely
good agreement with the theoretical prediction of Réf.of
a linear correspondence with a slope of#/0.4, we find a
slope S=0.403. The same kind of agreement was observed
in all the cases tested for the dependencd®ain k. The
figure also shows for a fixed value of the coupling (
=0.1) the dependence of a theoretically motivated function
f=P[2k(o+1)]" Y on o. Our motivation in selecting this
combination of axes is in order to verify the validity of our

| =inf

®)
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results in the larger limit. In that limit using the argument background of such a generalization is quite simple, as we
of the localization of the excitation on a single site it can behave indicated. Importantly, we have used this method to
readily seen that ligp_ .| =2. Hence, lim_..f=1, again in  quantitatively predict the behavior of the threshold of these
very good agreement with our results. An important producbreather excitations, conjectured in REf8] and predicted

of this calculation, is the behavior 6fat small values of the in Ref. [7]. Not only has excellent agreement been estab-
nonlinearity parameter, where the limit calculations do notished with the theoretical predictions of RET], but in fact
apply. We can see that the dependencd oh o departs  the method has rendered possible the numerical exploration
from the predicted threshold of[2he simulations are in one f regimes of parameter space that were not amenable to
dimension(1D)] and is replaced by a sharp increase, befo”’analytical treatment.

single site IO(_:aIization takes over, leading towards the limit \y/o pelieve that our findings will permit the theorist to
dependence illustrated above. construct, probe and understand better the nature of such

In summary, we hgve presentgd a nymencaj method folrnodes and their properties. The experimentalist will have a
the construction of discrete, localized, time periodic mOde%uantitative and  straightforward tool for predicting the

supported by nonlinear lattices SUbJe(.:t to Ham|lt0n|§m dy'thresholds of excitations of these modes, in realistic, experi-

namics. A clear asset of the method is its very straightfor- L
o . . mental situations.

ward numerical implementation and the ability to use sparse

matrix eigenvalue solvers, significantly reducing the number P.G.K. gratefully acknowledges support from the “Alex-
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